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The following are a collection of interesting results and connections in Linear Algebra that I’ve
compiled, mostly from Sheldon Axler’s Linear Algebra Done Right as well as Ken Ribet’s Spring
2020 lectures from Math 110 at UC Berkeley.

1 Riesz Representation Theorem

Theorem 1. Suppose V is a finite dimensional inner product space and ϕ is a linear functional on
V. Then there is a unique vector u ∈ V such that ϕ(v) = 〈v, u〉 for every v ∈ V .

Proof. To prove existence, take e1, ..., em to be an orthonormal basis of V . We can get an othonormal
basis of V by constructing a regular basis of V and applying the Gram Schmidt process to turn it
into an orthonormal one. Take v = a1e1 + ... + amem =

∑m
i=1〈v, ei〉ei. Then apply ϕ to both sides:

ϕ(v) = ϕ(
m∑
i=1

〈v, ei〉e1) (1)

=
m∑
i=1

ϕ(〈v, ei〉ei) (2)

=
m∑
i=1

〈v, ei〉ϕ(ei) (3)

=
m∑
i=1

〈v, ϕ(ei)ei〉 (4)

= 〈v,
m∑
i=1

ϕ(ei)ei〉. (5)

To prove uniqueness, suppose ϕ(v) = 〈v, u1〉 = 〈v, u2〉. Then by linearity in the second slot we have
0 = 〈v, u1 − u2〉. Since this must hold for all v ∈ V , we can conclude u1 − u2 = 0 and u1 = u2.

Now that we’ve proved the Riesz Representation Theorem, we can explore many of its amazing
implications in linear algebra. For the rest of these notes, I will refer to it as simply the Riesz
Theorem.

1: The Riesz Theorem establishes an explicit (albeit constructed) isomorphism between V and
V ′, where V ′ is the vector space dual to V . To see this, take V to be an inner product space, or
a vector space with the intrinsic mapping 〈·, ·〉 : V × V → F . Now we can define a natural map
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v 7→ ϕu where ϕu(v) = 〈v, u〉. This map sends every v ∈ V to V ′. ϕu is well defined because of the
Riesz Theorem.

2: The Riesz Theorem plays an important role in showing that the orthogonal complement of
a subspace U is the same as the annihilator on U translated back to V . Recall that the annihilator
on U where U ⊂ V , denoted U0, is defined as U0 = {ϕ ∈ V ′ : ϕ(u) = 0 ∀u ∈ U}.

Proof.

U⊥ = {v ∈ V : 〈v, u〉 = 0 ∀u ∈ U} (6)

= {v ∈ V : 〈u, v〉 = 0 ∀u ∈ U} (7)

= {v ∈ V : ϕv = 0} (8)

= {v ∈ V : ϕv ∈ U0} (9)

(10)

The step from line 7 to line 8 is possible because of the Riesz Theorem. Interestingly, this result
allows us to gain deeper insight as to why the left null space of a matrix A is orthogonal to the
column space of A. The left null space of a matrix A is simply the null space of AT . Consider T ′,
the dual map to T where T : V → W and T ′ : W ′ → V ′. Recall that the matrix of T ′ with respect
to some bases of V ′ and W ′ is AT . Now, we will show that nullT ′ = (rangeT )0.

Proof. Suppose ϕ ∈ nullT ′. Thus 0 = T ′(ϕ) = ϕ ◦ T , and 0 = (ϕ ◦ T )(v) = ϕ(Tv) for every
v ∈ V . This gives us ϕ ∈ (rangeT )0, and hence nullT ′ ⊂ (rangeT )0. To prove inclusion in the
opposite direction, suppose ϕ ∈ (rangeT )0. Thus ϕ(Tv) = 0 for every vector v ∈ V . Hence
0 = ϕ ◦ T = T ′(ϕ), or ϕ ∈ nullT ′, which shows (rangeT )0 ⊂ nullT ′.

We can now combine the two previous results: nullT ′ = (rangeT )0, and because U⊥ is essentially
U0 translated back to V , (rangeT )⊥ is the same as (rangeT )0 translated back to W , since rangeT ⊂
W . Thus, nullT ′ is essentially (rangeT )⊥, and it follows that the left null space of a matrix A is
orthogonal to its column space.

Allow me to digress for a bit on this topic: the least squares solution to a system of linear
equations is given by x = (ATA)−1ATy. This solution often relies on ATA being an invertible
matrix. In many engineering and machine learning applications of least squares, an overdetermined
system, or one with more equations than constraints, is preferred to one that is not overdetermined
precisely to make sure ATA is invertible. We can see that this makes sense because if the system is
overdetermined, the matrix A will have more rows than columns, which means its columns will be
linearly independent as long as the features chosen for the system are not all redundant. Now, the
question is: why is ATA invertible if the columns of A are linearly independent? To see this, recall
that this means the transformation of A is injective and consider the following:

ATAx = 0 (11)

Note that this equation tells us Ax ∈ nullAT , or in other words, colA ⊂ nullAT . Recall
from above that nullAT ⊥ colA. It isn’t too hard to see that nullAT and colA are orthogonal
complements, and from our results above this means that nullAT annihilates colA on W , where W
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is the codomain of the transformation of A. Thus, we have that Ax = 0 and since Ax = 0 only if
x = 0, ATAx = 0 only if x = 0.

Another (and perhaps more elegant) way to see this is to show that nullA = nullATA:

ATAx = 0 ⇐⇒ xTATAx = 0 ⇐⇒ (Ax)TAx = 0 ⇐⇒ ||Ax||2 = 0 ⇐⇒ Ax = 0 (12)
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